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A CRITICAL ANALYSIS OF THE GRAD APPROXIMATION ‘FOR CLOSING OUT 

THE MAGNETOHYDRODYNAMIC EQUATIONS FOR PLASMAS 

By Willard E. Meador 
Langley Research Center 

SUMMARY 

A critical analysis is made of the utility of Grad’s 13-moment distribution functions 
in closing out the generalized magnetohydrodynamic equations for plasmas. In particu- 
lar, the inaccurate particle velocity dependence of the Grad approximation is shown to 
yield significant errors in the collisional transfers of such quantities as momentum and 
energy as functions of the moments (variables of the problem) considered. These errors 
directly affect the relations between moments which are derived by means of the afore- 
mentioned closing-out process; consequently, when the Grad functions are written so as 
to incorporate the moment relations, considerable doubt is cast upon the ability of such 
functions not only to describe the original 13 moments but also to predict accurately other 
plasma properties (e.g., the entropy) as well. Numerous comparisons with the exact 
first- and second-order perturbation solutions of the Boltzmann equation are made in 
order to substantiate these conclusions. A study also is made of the convergence of 
Grad-type functions as more moments are added, in consequence of which at least 
16 moments are often necessary. 

INTRODUCTION 

Macroscopic equations of change for such velocity moments of the Boltzmann 
kinetic equations as constituent number densities, mean velocities, temperatures, 
stresses, and heat fluxes in plasmas have been generated by many authors, but with 
widely varying accuracies with regard to the net effects of interparticle collisions. A 
particular example of the more rigorous approaches is the work of Everett (ref. l), in 
which Grad’s 13-moment velocity distribution functions are utilized for closing out the 
moment equations, that is, for expressing the collisional transfer terms as functions of 
the moments (variables) of the problem. When coupled with Maxwell’s electromagnetic 
field equations, the resulting magnetohydrodynamic equations constitute a closed set. 

The efficacy of such developments obviously depends on the accuracy of the distri- 
bution functions employed in the closing-out process. In particular, errors in the 
detailed dependence of the distribution functions upon particle velocities may lead to 



serious errors in the relations between the collisional transfer terms and the moments 
of the problem and also in the relations between moments which are deducible from the 
final closed set of macroscopic equations. Examples of moment relations include the 
specifications of heat fluxes and pressure tensor elements in terms of the electron diffu- 
sion velocity. 

A prime purpose of the present research is to investigate the accuracy of the 
moment relations obtained by using the Grad 13-moment velocity distribution functions in 
the aforementioned closing-out process. This is accomplished by first assuming the dis- 
tribution functions to be expressible as perturbation series, then employing the closed set 
of macroscopic equations to compute the heat flux, a certain higher moment, and the 
second-order contributions to the pressure tensor as functions of the electron diffusion 
velocity, and finally comparing the results with those obtained from exact first- and 
second-order perturbation solutions of the Boltzmann kinetic equations. The character 
of each perturbation series is such that the zeroth-order term corresponds to a local 
Maxwellian distribution function, whereas the first- and second-order terms correspond 
to corrections which are linear and quadratic, respectively, in the electron diffusion 
velocity or in its driving force. 

Although this form of solution is not required by the Grad N-moment method, which 
is a more general approach that includes the perturbation expansion as a special case, 
there are two overriding advantages of the present procedure. They are, first, that such 
solutions are physically meaningful and, second, that exact solutions of the corresponding 
integro-differential perturbation equations are readily found if modifications to Meador’s 
collision model (ref. 2) are substituted for the Boltzmann collision terms. Thus, all ref- 
erences herein to the order of a function or quantity indicate the highest power retained 
of the electron diffusion velocity or its driving force. 

A study also is made of the convergence properties of Grad N-moment functions, 
whereupon it is observed that at least 16 moments are often necessary for the closing-out 
method to yield accurate moment relations and that the addition of higher first-order 
moments to the Grad functions is equivalent in a systematic fashion to the calculation of 
higher Sonine approximations to the Chapman-Enskog distribution functions (ref. 3). 
Several types of interparticle interaction potentials are considered, including those of the 
real (as opposed to Lorentz) fully ionized gas. 

Another objective of the present research is to investigate the ability of Grad 
N-moment functions to predict accurately additional plasma properties (e.g., the entropy). 
This particular study involves the substitutions of the following two sets of moment rela- 
tions into the original Grad functions: (1) the exact moment relations obtained from solu- 
tions of the Boltzmann kinetic equations and (2) those obtained from the closing-out pro- 
cess. The accuracies of the entropies thus calculated are found to be highly sensitive to 
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the plasma conditions; more specifically, the errors are especially large when the elec- 
tric field and the temperature gradient are so related as to yield zero heat flux with 
respect to the average electron motion. 

Finally, the Grad 13-moment functions are modified through second order by first 
imposing entropy maximization, which is the approach of information theory, and then 
referring the electron particle velocity to the electron frame of reference, which is the 
method suggested by Everett (ref. 1). Although both modifications lead to improvements 
in the evaluation of the pressure tensor, the one proposed by Everett gives the best 
agreement with the exact calculations. 

Unless otherwise noted, the following simplifying assumptions apply throughout the 
present report: time independence for all parameters, infinite mass for the heavy parti- 
cles which are considered fixed scattering centers for the electrons, zero plasma flow 
velocity, zero applied magnetic field, and spatially homogeneous fluxes, temperatures, 
pressures, and all other quantities through the second perturbation order. 

A(t) 

b 

f&o) 

.fj 

SYMBOLS 

ratio of impact parameter integrals 

impact parameter 

magnetic field 

unit vector in direction of magnetic field 

electron particle velocity 

heavy-particle particle velocity 

magnitude of electron charge 

electric field 

electron distribution function 

Maxwellian contribution to electron distribution function 

heavy-particle distribution function 
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gl(Y),!&) 

i,Lk 

A *A 
i&k 

T 

functions defined in equations (81)) (84), and (85) 

indices 

unit vector in x-, y-, and z-direction, respectively 

electron current density 

k Boltzmann’s constant 

me 

ne 

n. J 

Pe 

P e ,XY 

ge 
; em 

$1 
e,xy 

Gl 

62 

Fij 

S 

s(o) 

mass of electron 

electron number density 

number density of heavy particles 

electron partial pressure 

xy-component of electron pressure tensor (subscript used indicates appro- 
priate component) 

traceless electron pressure tensor 

xy-component of traceless electron pressure tensor referred to plasma 
motion (subscript used indicates appropriate component) 

xy-component of traceless electron pressure tensor referred to electron dif- 
fusion velocity (subscript used indicates appropriate component) 

heat flux vector, ;I 

vector, z2 - 781 + 

see table I) 

see table II) 

integral defined by equation (16) 

entropy density 

equilibrium entropy density 



s'j collisional transfer of reduced flux Fj 

t 

Te 

Tk 

ve 

X 

X,Y ,z 

time 

electron temperature referred to plasma motion 

electron temperature referred to electron diffusion velocity 

unit tensor 

electron diffusion velocity 

integration variable 

Cartesian coordinates 

time rate of change of f, due to collisions 

contribution to from first-order perturbation function 

contribution to from second-order perturbation function 

constants 

velocity moment defined by equation (3); for example, F. is reduced elec- 
tron diffusion velocity and gl is reduced heat flux 

1; 

6 

E 

rl 

8 

reduced electron particle velocity 

variational operator 

azimuthal angle for electron-heavy-particle collision 

heat flux parameter defined by equation (94) 

polar angle in spherical coordinates 



iTj 

5 

Lagrange multiplier 

effective interparticle interaction parameter 

cs electrical conductivity 

Vl 

‘p2 

(De 

X 

W 

collision time for entropy production 

collision time associated with electron diffusion 

azimuthal angle in spherical coordinates 

first-order perturbation function 

second-order perturbation function 

electron perturbation function 

scattering or deflection angle in electron-heavy-particle collision 

cyclotron frequency 

Subscripts: 

e electrons 

j heavy particles 

X,Y 7 X-7 Y-9 and z-components 

Special notations: 

0 average over velocity space 

0 0 average over velocity space using only Maxwellian distribution 

( )!! factorial employing only odd numbers; for example, (5)!! = 5 . 3 . 1 = 15 

Primed quantities in collision integrals denote conditions after collisions, as 
opposed to unprimed quantities which denote conditions before collisions. 
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MACROSCOPIC EQUATIONS OF CHANGE 

A convenient initial step in the investigation of first-order moment relations is the 
derivation from the macroscopic equations of change of a recursion-type formulation of 
the collisional transfer terms. Such is the purpose of the present section, in which the 
fundamental working equations are deduced. Second-order moment relations are dis- 
cussed in a subsequent section. As explained in the Introduction, the restriction to first 
order is imposed by neglecting squares and higher powers of the electron diffusion veloc- 
ity (or its driving force). 

The macroscopic equations of change for electrons are generated by taking veloc- 
ity moments of the Boltzmann integro-differential equation (ref. 3) 

in which (afelat)c represents the set of collision integrals and 7 is the reduced elec- 
tron particle velocity defined by 

(2) 

There is one such equation of change for each of the moments regarded as variables of 
the problem. 

As an example of this procedure, the equation of change for the moment 

4 = (jA$ = neB1 1 +ge dZe (3) 

is obtained from equation (1) by multiplying each member of that expression by 2j- c, c,, 
integrating over velocity space, and employing vector calculus and Gauss’ divergence 
theorem in the usual manner (ref. 3). The result is 

ene 2kT, (2j+1)‘2F 
+-- 

( ) lTle me j 
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where Zj refers to the collisional transfer of Fj and is expressed as 

(5) 

It is evident from equation (4) that if 0, 1, and 2 are the only values considered for 
the index j, the variables of the system (in an unreduced sense) will be comprised of the 
28 moments corresponding to ne, F(), &, j52, and the symmetric tensors yy 
and ~47~ . Likewise, ( 3 

(-+), (&7), 
j selected as 0 and 1 involves the 19 moments corresponding to 

ne, PO, &, and the symmetric tensors 7~ ( 3and (~~79, which set can be reduced to the 
familiar 13 moments of Grad (ref. 1) by using a distribution function to express r2,‘y’ in 

( > 
terms of the remaining variables. Such effort is part of the closing-out process, as is 
the elimination in a similar manner of the collisional transfer term Zj in equation (4). 
The number of moments ultimately retained as variables of the system is obviously a 
matter of some choice, there being no strict limitations on where the closing-out process 
must stop. 

Because of the previous restrictions to spatial homogeneity and time independence, 
the first two terms on the left side of equation (4) are zero. In addition, since the elec- 
tric current is assumed to generate the only magnetic field and the product Fj X g is 
therefore second order by reason of Maxwell’s equations, the first-order form of equa- 
tion (4) can be written 

$ = ~($$--~‘2((yZj)o& + 2jE . ($W~jT)o) 

l/2 
(3 + 2j)(y2j)oZ . 

The zero subscripts refer to velocity averages taken with respect to the zeroth-order 
Maxwellian distribution function given by 

Equation (6) is further reduced by utilizing 

( > +% o =nel 
s 

y2jfp)dCe = 2-j(2j + l)!! 

(f-3) 

(8) 



to write the equation of motion 

l/2 
E 

and the recursion relation 

(9) 

(10) 

Equation (10) depends only on the assumptions of first-order theory and spatial and time 
independence. This equation is the working equation for the computation of first-order 
moment relations, together with equation (5) and a formulation of (af,/at), yet to be 
given. 

More specifically, if an electron distribution function of the Grad N-moment variety 
is employed in equations (5) and (lo), all moments & can be expressed in terms of the 
reduced electron diffusion velocity zo. Hence, FO is regarded as input data and thus 
is independent of the approximation to the distribution function. Equation (9) is of use 
only when the dependence of gj upon the driving electric field is desired. 

Grad N-Moment Distribution Functions 

A convenient way of writing Grad’s 13-moment electron distribution function for the 
purpose of closing out equations (5) and (10) is as follows (ref. 1): 

f, = ft)(l + Ve) 

where 

0 
and Fe is the traceless pressure tensor defined by 

Although equation (12) and its first-order form (see appendix A for an alternate 
derivation) 

(11) 

(12) 

(13) 

(14) 
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produce identities for the moments when the proper integrations are performed, this 
characteristic is not sufficient to guarantee accurate values of Zj when equations (11) 
and (14) are employed in equation (5). The integrals defining these moments are quite 
different from those defining the Zj, so that errors in the detailed F-dependence of equa- 
tion (14) will be reflected in the results from equation (5) and also in the moment rela- 
tions subsequently derived from equation (10). 

Before any distribution function can be employed in equation (5), however, the colli- 
sional derivative (af,/at), must be expressed in terms of qe. This is accomplished 
by using the following simplified first-order collision model developed by Meador (ref. 2): 

e2neR13 1-(4/5)ftp)(p 
=-meoR ’ e 

in which qj is the integral 

Rij = s mx(4i/t;)+je-x2ti 
0 

(15) 

(16) 

and 5 is an effective interaction parameter defined in such a way as to guarantee the 
correct relation between the heat flux and the electron diffusion velocity on the basis of 
the exact solution to the cor.responding Boltzmann equation. 

Reference 2 further shows that equation (15) is entirely adequate for describing a 
great variety of realistic plasmas, even though to the first Chapman-Enskog perturbation 
order the description is exact only for a Lorentz gas (i.e., negligible electron-electron 
interaction effects either in a slightly ionized gas or in a fully ionized gas having large 
ionic charges). The parameter 5 in the latter cases is the exponent in the electron- 
heavy-particle inverse-power interaction potential. 

The substitution of equations (14) and (15) into equation (5) yields 

Zj(13-moment) = - 
e2nzR13R 

-1,2.+5( 
J 

2meoRi45 
kl - Wt + gFo (17) 

which relation combines with equation (10) and the identity 

R -1,2j+7 = tm1k3 + jk - ilR-1,2j+5 

. to give 

Fl(13-moment) = 
5Ell + 6j)t2 - 8(1 + j)t + la -. 

2kl3 + 6j)t2 - 8(2 + j)( + 14 
PO 

(18) 

(19) 
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In particular, when j = 0, the expression 

&(13-moment) = 
5(11t2 - 85 + 16) P 

2(13t2 - 1st + 16) ’ 
,W) 

represents the first-order culmination of the present method for closing out the macro- 
scopic equations of change at the 13-moment level. 

Likewise, for the other Grad functions of present interest, the substitution of 

qe(5-moment) = 2FO a 7 (21) 

and equation (15) into equation (5) gives 

STj(5-moment) = - 
e2nZR13R-1,2j+5 - 

meoRi4 
PO (22) 

and the substitution of equation (A5) and equation (15) into equation (5) gives 

cj(lG-moment) = - e2n2,R13R- 1,2j+5 
- 2meoRg4<2 8j + 4j2 t2 + > 16(1 - j)[ + 16 1 z. 

4j2)c2 - 8(1 - 2j)< - 16]& - &p - 4j2)t2 + lSj[ - 16 I> F2 

(23) 

Accordingly, equations (lo), (18), and (22) yield 

_ R-l,2j+7 = (3 + jk - 2 5 + 2j 
2 R-1,2j+5 F, 

(24) 

so that 

[(5-moment) = 4 (25) 

In a similar manner, the following expression is deduced from equations (lo), (18), 
and (23): 
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g2(16-moment) = 35 (23 + 56j + 20j2)E3 - 4(27 + 20j + 4j2)t2 
[ 

-1 
+ 16(5 + 4j)[ - 64 I {E 4 21 - 32j - 20j2)t3 

+ 4 ( 19 + 12j + 4j2 ) t2 - 16(1 + 4j)[ + 64 1 F. 

- i E 3 - 44j - 20j2)t3 + 4(i9 + 16j + 4j2)t2 

- 16(3 + 4j)t + 64 1 &(16-moment) (26) 
-I J 

Equation (26) is further simplified by solving simultaneously the j = 0 and j = 1 
expressions, which are 

g2(16-moment) = 
+ 76t2 - 1st + 64)jio - 4(3t3 + 76t2 - 48< + 64 EI(l6-moment) 

- 108t2 + 805 - 64 

3 - 
and 

(27) 

F2(16-moment) = 
7[4(61t3 - ES52 + 1125 - 64&1(16- moment) - 5(31t3 - 140t2 + 805 - 64&O] 

4(99t3 - 204t2 + 1445 - 64) 

(28) 

to obtain the first-order result 

gI(l6-moment) = 5(349@ - 416t3 + 672t2 - 5125 + 256) 2(425( 4 ~~ - 81653 + 11205 2 - 7685 + 256) 
(29) 

Only one conclusion can be drawn from the differences between equations (20) 
and (29): In spite of the fact that the macroscopic variables PO and FI explicitly 
appear in each of equations (14) and (A5), the 13-moment and 16-moment distribution 
functions do not predict the same expressions for the collisional transfer terms 

s’j(&,&). H ence the accuracy of the closing-out procedure may be quite sensitive to the 
number of moments considered as variables in the original ‘pe. The one exception 
occurs for Maxwellian molecules (5 = 4), in which case all results agree with 

12 



jlI(5-moment) = nil 1 ~~?$)(2i3~ - $dze = 4 F. (30) 

and 

ji# -moment) = nil j- y4i?fp)(2;o - $dz, = T F. = 7(& - ; zo) (31) 

because of the relation 

go,(13-moment,.$=4) = cp,(l6-moment,t=4) = cpe(5-moment) (32) 

In analogy with equation (25), the combination of equation (20) with the j = 1 form 

i;l( 13-moment) = 
5(1752 - 1st + 16) -c 

2(19[2 - 245 + 16) 
PO (33) 

of equation (19) gives 

t;(l3-moment) = 4 or 4/3 (34) 

The bounds of the closing-out procedure are exceeded in both instances by the application 
of equation (10); in particular, the macroscopic equation of change for gj with j 2 1 is 
used in deriving equation (25) and the macroscopic equation of change for p2 is used in 
deriving equation (33), whereas the accurate descriptions of the 5-moment and 13-moment 
distribution functions stop (unless 5 = 4) with F. and FI, respectively. A definite 
upper limit on the index j is always imposed in equation (10) if the collisional transfer 
terms are computed from a Grad N-moment function. 

Comparisons of Heat Fluxes 

Reference 2 shows that the exact (or infinite moment) first-order distribution func- 
tion corresponding to an applied electric field and the collision model of equation (15) can 
be written 

~e(~-moment) = - 2R04 ,(4/5)-l~o . r’ 
R13 

(35) 

Accordingly, 

jfI(m-moment) = 25-l(5 + l)FO (36) 

13 



and 

F2(m-moment) = 2te2(3t2 + 55 + 2)pO 

from equations (3) and (35). 

(37) 

The following summary of heat fluxes obtained from equations (30), (20), (29), 
and (36) can thus be used to assess the convergence properties of Grad-like distribution 
functions in closing out the macroscopic equations of change: 

&(5-moment) 2~ozo (38) 

Fl( 13-moment) 55(4 - 5) 
13[2 

z 
- 1st + 16 

0 (3% 

gl(lG-moment) 
105(4 - [)(19t2 - 245 + 16) 

425t4 - 816t3 + 1120t2 - 7685 + 256 
FO (40) 

and 

&(m-moment) (41) 

Numerical calculations based on equations (38) to (41) are given in table I for effec- 
tive interparticle interaction potentials corresponding to a Lorentz fully ionized gas 
([ = l), a real fully ionized gas including electron-electron collisions (5 = 1.6674 from 
ref. 2), a Lorentz gas with 5 = 2, a Lorentz gas composed of Maxwellian molecules 
(l = 4), and a Lorentz gas of rigid spheres (5 = 00). 

TABLE I.- NONDIMENSIONAL HEAT FLUX Gl= & - ; F. 

Gl/Fo for C; of - 

0.000 0.000 
.ooo -.385 
.ooo -.447 
.ooo 1 -.500 

Although the errors in the heat flux at the 13-moment level are not especially serious in 
first-order calculations, they may well be large compared with the higher order 

N I 
1 1.6674 2 

5 0.000 0.000 0.000 
13 1.154 .764 .556 
16 1.521 .704 .507 
03 1.500 .699 .500 

4 
I 

00 I 
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corrections (to linear flux theory) discussed by Everett. In addition, the errors in & 
are fed back to the distribution functions themselves and will affect the strongest 
F-dependent terms therein; consequently, the errors may be compounded in other types 
of velocity integration (including the macroscopic equations of change for higher order 
quantities). 

Another demonstration of the fact that the Grad function is less accurate in the 
present context than was commonly supposed is obtained from similar comparisons for 
i52. The expressions analogous to equations (38) to (41) are quite complicated, however, 
especially for the 16-moment velocity distribution; thus, it is more convenient in that 
case to compute the fluxes directly from equations (28) and (29). There results 

F2(16-moment,<=l) - 7 &(16-moment,t=l) 
C 

- ; To = 0.968Fo 1 (42) 

E2(16-moment,[=1.66’74) - 7 - ; & = -0.287p. 
3 

(43) 

and 

z2(16-moment,[=2) - z PO = -0.323Fo 1 
p2(16-moment,,$=4) - 7 &( 16-moment,[=4) 

C 

j?2(16-moment,t=m) 

(44) 

(45) 

(46) 

The remaining examples are not as difficult to handle and the following equations 
may be derived from equations (3), (14), and (39) for the 13-moment function and from 
equations (31), (36), and (37) for the 5- and a-moment functions: 

and 

F2(5-moment) - 7 &(5-moment) 
[ 

-4p. =o 1 
p2(13-moment) - 7 jjl(l3-moment) - % z. = 0 

[ 1 
F2(m-moment) - 7 &(m-moment) 

C 
AFo = 1 (t - 4)(35 - 4) p’, 

4t2 

(47) 

(48) 

(4% 
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Numerical calculations based on equations (42) to (49) are given in table II, where 
it is seen that the 13-moment analysis is completely inadequate (except for Maxwellian 
molecules) and even the 16-moment analysis yields significant errors when compared 
with the exact answers. 

TABLE II.- NONDIMENSIONAL FLUX ?$2 = z2 - 7jfi + F i3, 

1 

0.000 
.ooo 
.968 
.750 

i&&o for 5 of - 

1.6674 2 4 

0.000 0.000 0,000 
.ooo .ooo .ooo 

-.287 -.323 .ooo 
-.210 -.250 .ooo 

co 

-1 

0.000 

.ooo 

.494 

.750 

Entropy Calculations 

Another important application of the present theory involves calculations of the 
entropy density difference (ref. 2) 

s(O) -s,!Z 2 fp)qgdct 
s e (56) 

This and related quantities provide excellent criteria on the utility of the closing-out pro- 
cedure for predicting plasma properties other than the basic moments appearing in the 
Grad-like functions. 

It is further shown in reference 2 that if the collision time 7s for entropy produc- 
tion is introduced according to the definition 

7 _ T&(O) - s) 
S- 

nekp~ 

(51) 

where 7c is the familiar collision time 

( > -1 
To = e211e mea (52) 

the generalized Ohm’s law can be written (through linear terms in was) in a form com- 
pletely analogous to the mean-free-path result. Hence, 

> (53) 
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The computation of 7s from equations (50) and (51) is thus equivalent to finding the Hall 
conductivity in the case of small magnetic fields. 

The evaluation of equation (50) requires the following set of perturbation functions 
obtained from combinations of equations (21), (14), (A5), (35), and (38) to (46): 

cpe(5-moment) = 2ijO . 7 (54) 

cpe(13-moment) = 4[I1(4 - 5)~~ + 9t2 - 185 + ij ;? 

13E2 
0’ 

r’ 
(55) 

- 1st + 16 

cp,(l6-moment,[=l) = &(0.968y4 + 3.871~2 - 0.645)po . r’ (56) 

(pe(16-moment,[=1.6674) = - 6.937y2 - 2.669)zo - r’ (57) 

cpe(16-moment,<=2) = - A(O.323~~ - 5.807~~ - 5.807)po . 7 (58) 

cpe(16-moment,[=4) = 2zo . F (5% 

(Pe(16-moment,[=m) = &(0.494y4 - 6.588~~ + 29.65)Fo . 7 

and 

cpe(w-moment) = - 2R04 ,(4/O+jo . 3 
R13 

(6’3) 

(61) 

Numerical calculations based on equations (50), (51), and (54) to (61) appear in 
table III for a variety of effective interparticle interaction potentials and number N of 
moments in the Grad-like distribution. Except for the trivial case of 5 = 4, the 
13-moment analysis yields an error in - 1 that ranges from 17 percent for 
5 = 1.6674 to 67 percent for ,$ = ~0. 
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TABLE III.- RATIO OF COLLISION TIMES 7s AND ~c 

1 To for 5 of - 

1.6674 

1.000 
1.233 
1.203 
1.199 

2 

1.000 
1.123 
1.109 
1.104 

4 

1.000 
1.000 
1.000 
1.000 

cm 

1.000 
1.059 
1.094 
1.178 

The values of 7 S/70 for 5 = 1 coincide exactly with the first, second, third, and 
infinite Sonine approximations (ref. 2), respectively, as found from solutions of the 
Boltzmann equation. That this is no accident follows from the observation that equa- 
tion (55), for example, is identical for 5 = 1 with the second Sonine approximation 
derived in appendix C of reference 2. It is not immediately obvious why Grad-like func- 
tions reduce to Sonine approximations to the solution of the integro-differential kinetic 
equation when the higher moments -8j are related to PO through the closing out of the 
macroscopic equations of change; however, a key factor may be the appearance of Sonine 
polynomials (in r) in equation (A5). In any event, the fact that the addition of higher first- 
order moments to the Grad function in the present method corresponds in one-to-one fash- 
ion to higher Sonine approximations to the Chapman-Enskog distribution function is of 
considerable interest because it provides an alternate and equivalent method of solution. 

One final illustration of this equivalence is given in table IV, where the ratio of 7s 
to To. computed in the present paper is compared for the real fully ionized gas 
([ = 1.6674) with the Sonine approximations (denoted by N’) of reference 2. The small 
differences that do prevail at each level are caused by the use of the collision model of 
equation (15) in the one case and the more rigorous Chapman-Enskog treatment of 
electron-electron encounters in the other. Oddly enough, the much simpler approach 
yields slightly better values with respect to the exact m-moment numbers. 

TABLE IV.- RATIO OF COLLISION TIMES 7s AND ~c FOR 

A REAL FULLY IONIZED GAS (5 = 1.6674) 

N %/% 
(Grad-like) 

5 1.000 
13 1.233 
16 1.203 
co 1.199 

N’ 

1 1.000 
2 1.259 
3 1.207 
03 ---- 

VO 
(Chapman-Enskog) 
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Other Applications of Grad-Like Functions 

It has now been shown that Everett’s method of utilizing the Grad 13-moment dis- 
tribution function for closing out the macroscopic equations of change leads to substantial 
errors in the relations between To and the higher fluxes F. These errors, in turn, 

J 
are fed back to the distribution function itself, so that subsequent calculations of quantities 
such as the entropy are similarly affected. What is not clear, however, is whether the 
errors in the entropy are caused primarily by the approximate forms of the distribution 
function or by the use of incorrect moments therein. Even though such distinctions are 
improper in the strictest sense, the possibility that Grad-like functions employing exact 
pl-relations will yield improved entropy values should be investigated. 

Two cases are considered for this purpose: (1) the spatially homogeneous Lorentz 
fully ionized gas (< = 1) already discussed; (2) a fully ionized Lorentz gas in which there 
is no heat flux relative to the average electron motion and which implies a temperature 
gradient in fixed relation to the electric field. Only in case (1) does the 13-moment 
function prove to be reliable. 

Since equations (41) and (49) yield 

and 

(62) 

for case (l), the Grad-like perturbation functions may be written as follows from equa- 
tions (21), (14), (A5), and (35): 

cpe(5-moment) = 2Eo . 7 

qe(13-moment) = 

and 

.I/2 
q,(m-moment) = 4 r3po . F (67) 
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Numerical calculations based on equations (50), (51), and (64) to (67) are presented 
in case (1) of table V, where it is evident that a major improvement is obtained over the 
corresponding 13-moment result in table III. What small error remains is thus attribut- 
able entirely to the form of the distribution function rather than to an incorrect relation 
between Fl and zo. 

TABLE V.- RATIO OF COLLISION TIMES rs AND ru FOR 

A LORENTZ FULLY IONIZED GAS 

Conditions 

Case (1): 
No gradients, 

PI = 4P6 

Case (2): 
Temperature gradient, 

Fl = “PO/2 

N 75 /‘@ 
5 1.000 

13 1.900 
16 1.932 
03 I 1.933 

5 1.000 
13 1.000 
16 1.804 
co 1.865 

Case (2) requires the solution of equation (1) with the temperature gradient included, 
which is available from reference 2 in the form 

p,(a-moment) = - ~(~~‘2y(4/~)m1[-~+ (y2 - $VlnTj . 7 (68) 

for zero pressure gradient. This expression can be used to evaluate & and PO as 

& = n-3/2 
s 

e-Y2),a~qe d7 = _ (’ i l)ro t- k(< + 4)VT, I (6% < me 
and 
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the combination of which with equation (68) and 

finally gives 

q,(m-moment) = 7Jm 
- 32 r3(3r2 - 20)po * r’ 

if <=l. 

Since the appropriate moments of equation (72) yield 

(71) 

(72) 

(73) 

the following set of perturbation functions are obtained when equations (71) and (73) are 
imposed on equations (21), (14), and (A5): 

qe(5-moment) = cpe(13-moment) = 2Fo . T (74) 

and 

cpe(16-moment) = - 5 (75) 

Numerical calculations based on equations (50), (51), (72), (74), and (75) are given 
in case (2) of table V, where it is seen that the 13-moment approximation to the ratio 
of 7s to TV is inadequate. The reason is obvious: Since cpe(13-moment) is the 
same as q,(5-moment), and since f,(5-moment) corresponds to a Maxwellian distri- 
bution referred to the electron frame of reference, the 13-moment function is unable in 
this case to describe the important frictional effects arising from electron-ion collisions. 
At least the 16-moment approximation is needed to safeguard against this occurrence. 

Finally, one might consider the prediction of p2 by the 13-moment distribution 
function. Since the corresponding integration of equation (14) yields 

regardless of the relation between PI and PO, there can be no agreement at this level 
with equation (63) or (73). Serious difficulties are therefore unavoidable in some appli- 
cations of the Grad function, even when the best values of the fluxes are employed. 
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SECOND-ORDER THEORY 

Exact and Grad Solutions 

As an example of the utility of the closing-out method for predicting higher order 
plasma properties, the second-order traceless pressure tensor so determined is com- 
pared in the present section with calculations involving a direct second-order solution of 
the Boltzmann equation. Errors in the results obtained by using the Grad 13-moment 
approximation are expected to arise from the fact that the pressure tensor term in equa- 
tion (12) incompletely describes higher order contributions in much the same manner that 
the electron diffusion velocity and heat flux incompletely describe first-order effects. 

Since an exact second-order solution is necessary in this investigation, the physical 
problem should be as tractable as possible and simpler than the one considered by 
Everett (ref. 1). The essential requirements are satisfied quite well by a hypothetical 
plasma in which an electric field is applied in the z-direction, the magnetic field is zero 
(in violation of Maxwell’s equations), there are no spatial variations of any macroscopic 
quantity, and a Lorentz-like collision model is applicable. 

The pertinent second-order perturbation equation can be written from equation (1) 
as follows: 

Primed symbols refer to quantities after a collision (as opposed to unprimed symbols for 
quantities before a collision) and qe is split into additive ~1 and u2 parts, where 
q2 is second order and 

2R04 (4/5)-l 
“1=-Y 

R13 
Porz 

from equation (35). Also used in the derivation of equation (77) was Ohm’s law and 
equation (52). 

It is evident from the energy balance expression (ref. 3) 

3 ape 2P,$ 
--=E.jL- 
2 at To 

(73) 

(79) 

that the time derivative of the electron pressure is second order. Moreover, since the 
number density ne is time independent by reason of the electron equation of continuity, 
there results 
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af (O) (0) 2 
-ft’ y2-; a1;pe -4f; po y2-; e 

at ( ) 7cJ i ) 

from equations (7) and (79). 

A physically meaningful solution is obtained by substituting the trial function 

‘p2 = 3r; - Y2 8.1(Y) + &m 
( ) 

into equation (77) and using equation (80), the relation 

( ) 
(0) 

a f(qQ = 
aY, e 

2fe R04P0 Y(4/U-3 2 

R13 
E -2(Y”-~)~~ 

and the collision integral 

j-(y; - yL2)b db de = A(5)R13 
2njToRo4 ($)l’2ym4’F (3’: - ‘“) 

derived in appendix B. The resulting equations are 

g,(r) = gz;;3 y@/5b4(y2 - !-$A) 

and 

Since neither the electron number density 

ne 3 
s 

ft)dc’,+ 
s 

f(‘)cp2d? =n e e e 

nor the electron temperature 

T, E % &o) - 
3n,k e e dce + s =‘I’, 

030) 

031) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 
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is affected by q2, the following combination of equations (‘78), (81), (84), and (85) is the 
correct perturbation function through second order: 

Ve = 2R04Po y(4/&1, + 
R13 

8R:4P: ,,@/5b4(y2 
’ W)R~3 

4$)(3$ _ ,,2) 

The traceless electron pressure tensor is determined by the substitution of equa- 
tion (88) into equation (13), whereupon one obtains 

0 
P 

em 
=“p 

e,xz 
=$ 

e,yz = 0 

and 

0 
P = -gexx -“p 

64(t + 1>Ro4R22 
= 

e,zz 7 em 
-2ge xx = 

, 45 5A(5)R;3 
pe4 

(89) 

(90) 

Equations (89) and (90) are the exact second-order tensor elements required for 
comparisons with the approximate Grad 13-moment predictions. It is essential, how- 
ever, that the same physical problem be considered in all calculations; accordingly, the 
application and closing out of the macroscopic equation of change for P, zz must corre- 
spond to the present plasma conditions, which are not the same as those of Everett. 

The multiplication of each term of equation (1) by mec~ z and subsequent integra- 
tion over velocity space yields the following P, zz expression 7 

+ 2eneEve = me 

= me fef; - fefj)lre - 51 b db de dFe d?j 

(91) 

in which Chapman and Cowling’s concepts (ref. 3) of inverse collisions and microscopic 
reversibility, together with several of the assumptions in the last paragraph of the 
Introduction, are employed in the successive simplifications of the collision integral. 
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Further simplifications of equation (91) are obtained by the use of Ohm’s law and 
equations (79) and (83). There results 

0; = 9A(5)R13 
64aRi4 s e-y2yl-(4/5) (3~; - y2) ie G (92) 

where the qe is that of equation (12) if the unmodified Grad 13-moment function is used 
for closing-out purposes. As mentioned previously, substantial errors may arise from 

the fact that the pressure tensor term in equation (12) incompletely describes second- 
order contributions in much the same manner as the electron diffusion velocity and heat 
flux incompletely describe first-order effects. 

All such second-order corrections to equation (12) are available through straight- 
forward extensions of the information theory outlined in references 4 and 5 and appen- 
dix A. More specifically, if the entropy is maximized subject to constraints on ne, 

PO, pl, and s e, which are interpreted as the observer’s complete first-hand knowledge 
of the plasma, the following modified 13-moment perturbation function is obtained: 

cp,=2p y 
( 
277y2+1-77 

6z5 ) 
++gezz 

e ’ 
(3$ - y”) t- $$qy4 

2 

+ 20(1 - q)y2 + 7(r7 - 10) - 1 
4~(2~ + 5)~~ y2 

25 ( - ; ) 

The parameter q introduced in this expression is defined by 

rl= 
Pl 5 --- 
PO 2 

(93) 

A difficulty with equation (93) is apparent from the fact that the corresponding 
entropy is associated more with the observer’s uncertainty about the plasma than with 
the disorder predicted by the exact solution to the Boltzmann equation. If the number of 
constraints employed in the entropy maximization is too small, the observer’s uncer- 
tainty may be so unreasonably large that the two correction terms in equation (93) will 
substantially overcompensate the errors inherent in the unmodified Grad approximation. 
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The substitution of equation (93) into equation (92) finally yields 

0 
P ,,,,(modified 13-moment) = 

46 tRi4 

- 2)A(5)R13Rm1 5 7 

477 -- 
7552 

e 7t2 - 326 + 16 q + lO(([ - 4) 4 pea; (9% 

As an examination of this development demonstrates, all that is necessary for the conver- 
sion of equation (95) to the unmodified Grad 13-moment result is the formal replacement 
of n with zero. Calculations of the latter type are presented in the second column of 
table VI for several electron-heavy-particie interaction potentials and may be compared 
with the exact results obtained from equation (90) and listed in the fourth column, 

TABLE VI.- TRACELESS PRESSURE TENSOR COMPONENT 

5 

1 
4 
03 

$ 
e,zz / Pe& 

Unmodified 13-moment Modified 13-moment Exact 

0.655 4.135 2.749 
1.719 1.7 19 1.719 

1.964 2.137 2.513 

Also given in table VI are the modified (by information theory) values of $, zz I 
as computed from equation (95) with 

from equation (4 1). The previously mentioned possibility of overcorrections of errors 
inherent in the unmodified Grad distribution is especially apparent in the case of Coulomb 
interactions (t = l), but evidently fails to occur when 5 is greater than 4. It is inter- 
esting that Maxwellian molecules ([ = 4) again have the peculiar property whereby the 
corresponding exact distribution function of equation (88) is identical with that of equa- 
tion (93) and entropy is maximized automatically. 

Since a feature of the derivation of equation (93) from information theory is the fact 
that the square of the first-order function ~1 contributes heavily to the resulting 
q-dependent terms and since the “1 of equation (12) rather than that of equation (78) 
was used in this regard in order to preserve the 13-moment characteristics of Q~, it 
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may be more consistent to substitute into equation (95) the following value of n obtained 
from the 13-moment equations (39) and (94) rather than the m-moment value in 
equation (96) : 

??I= 5t;(4 - 5) 
13t2 - 1st + 16 

In par titular , 

“p e zz 
, 

13-moment, ,$=l,q=$ = 3.140p,a; 

represents a substantial improvement over the corresponding value in table VI, but 

“p e zz 9 13-moment, ,$=m,~ -g = 2. 114pe$ 

(97) 

(98, 

(99) 

does not. 

These examples illustrate the difficulty in making general statements irrespective 
of the microscopic parameters. It does appear, however, that the type of consistency 
invoked in equations (97) to (99) is highly desirable over an important range of f and 
is not very damaging for the remaining values of 5. In any event, it seems safe to 
assert that except for values of 5 in the neighborhood of 4, and especially for values 
of 4 somewhat less than 4, the unmodified 13-moment approximation is quite inadequate 
for closing-out purposes at the second-order level. This trend toward greater inaccura- 
cies is expected to continue in the still higher orders, an example of which is the calcu- 
lation of the third-order contribution to the electrical conductivity. 

Reference Velocity Modification 

It was shown in the preceding paragraphs that a consistent treatment of the modi- 
fied (by information theory) 13-moment approximation leads to a substantial improvement 
over the unmodified approximation for an important range of the interaction parameter t. 
Another modification (ref. 1) consists of taking the electron particle velocity relative to 
the mean velocity of the electrons in the Grad approximation, instead of relative to the 
mean mass velocity of the plasma. Everett’s argument for this procedure is as follows: 
Although the electrons still must be reasonably close to thermodynamic equilibrium 
among themselves because the dominant term is Maxwellian relative to the electron dif- 
fusion velocity, they need no longer be close to thermodynamic equilibrium with the heavy 
particles. 
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Such an argument seems inconclusive, however, because the description of the 
frictional distortion by electron- heavy-particle collisions of the Maxwellian distribution 

function for electrons does not appear to be generalized. Hence, the requirement of near 

thermodynamic equilibrium between species does not appear to be alleviated. The pur- 
pose of the present section is to investigate whether, in fact, Everett’s modification is an 

improvement over that of information theory. 

Everett’s distribution function (ref. 1) through second-order terms can be written 

the primes in which indicate quantities referred to the electron frame of reference. If 

the parameters CY~ and o2 are introduced such that 

T;=T,(l+a&) 

and 

% zz =;; 
4P,$ 

, e,zz +ycy2 

the subsequent expansion of equation (100) yields 

f, = 11 e(sr’2 e-v2 (’ + ?e,Everett) 

(101) 

uw 

(103) 

and 

“ee,Everett = w(jYz $lY2 -I- 1 - 17 
) 

+ & g e,zz (3,q - Y2) + - 
2:;: (3$ - p) 
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I 

The requirements that the energyoand m,cg z moments of equations (103) and 
(104) result in identities for T, and Pet+,, resiectively, give 

2 01 =-- 
1 3 (105) 

and 

3=-5 (106) 

so that equation (104) becomes 

(107) 

There is, indeed, a difference between ‘p, Everett and the unmodified 13-moment func- 
7 

tion of equation (12). 

If equation (107) is substituted into equation (92) for the hypothetical plasma out- 
lined previously, there results 

5 tR04 2 
- + t4 ,917 

2)A(5)R13Rs1 5t 1 pepi (108) 

- 
7 5 

Accordingly, the values of Fe zz 

2.231~~0; for 5 = 1, 4, and ~0,’ 

from equation (108) are 3.055pe& 1.719pe& and 

respectively, if n is computed from equation (96). 

Likewise, the values of se zz are 2.501pe& 2 2 1.719pepo, and 2.169pepo for 

[ = 1, 4, and ~0, respectively, if n is computed from equation (97). 

As seen in table VII, wherein all the calculations of be,zz([=l) are listed, 
Everett’s function gives the best values yet of the traceless pressure tensor. It seems 
quite adequate for this purpose over the entire range of 5 and is definitely to be pre- 
ferred over the distribution function derived from information theory. 

Of some concern, however, is the fact that Everett’s modifications in equation (107) 
are confined to the second perturbation order; consequently, his method fails to improve 
the inaccurate entropies and relations between first-order moments that were deduced 
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TABLE VII.- TRACELESS PRESSURE TENSOR COMPONENT 

FOR COULOMB INTERACTIONS (.& = 1) 

( ‘e,zz/Pe& / 

0.655 Unmodified Grad 13-moment. 
4.135 13-moment with entropy maximization and exact heat flux. 
3.140 13-moment with entropy maximization and approximate heat flux. 
3.055 Everett 13-moment with exact heat flux. 
2.501 Everett 13-moment with approximate heat flux. 
2.749 Exact solution. 

Method 
--.- ..__ - . 

previously (tables I to V) by using the Grad distribution. Nor can it be said without addi- 
tional calculations and comparisons that Everett’s third-order results are valid. 

CONCLUSIONS 

The utility of Grad-like distribution functions has been investigated to the first and 
second perturbation orders with the following conclusions: 

1. The 13 moments in Grad’s velocity distribution function are deprived of their 
character as independent variables of the problem when the function is employed in the 
Everett manner to close out the macroscopic equations of change. The relations thus 
derived between the moments are not satisfied by the exact moments because of the 
inaccurate evaluations of the collisional transfer terms using the Grad approximation. 

2. Although the errors in the Everett type of calculations of the heat flux relative 
to electron diffusion are not serious of themselves, the fact that the heat flux multiplies 
the strongest velocity polynomial in the 13-moment distribution function can lead to much 
larger errors in calculations of other quantities. 

3. The substitution into the original Grad 13-moment distribution function of the 
incorrect heat flux obtained by the closing-out method results in poor predictions of both 
the entropy and the entropy production. This is especially pronounced if the important 
difference between the collision time for entropy production and the collision time asso- 
ciated with electron diffusion is considered. That such errors are caused primarily by 
incorrect moments, rather than by the approximate form of the 13-moment function, is 
demonstrated by the excellent value of the entropy found when the correct heat flux is 
substituted into the Grad distribution. 

4. The Grad function is much more accurate in its prediction of entropy if, as orig- 
inally intended, experimental values are substituted for the 13 moments. Even so, the 
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results are quite poor under special circumstances - namely, thermodynamic and field 
conditions for which the 13 moments are insufficient to describe the frictional effects 
arising from electron-heavy-particle collisions. In no case, however, does the 
13-moment distribution function provide correct values of the moments higher than the 
heat flux. 

5. A generalization of Everett’s method to include Grad-like functions of arbitrary 
complexity shows a one-to-one correspondence between the number of moments consid- 
ered and the number of Sonine polynomials employed in the first-order Chapman-Enskog 
solution. In particular, the 5-moment analysis corresponds to the first Sonine approxi- 
mation and the 13-moment analysis corresponds to the second Sonine approximation. 
What benefit, if any, can be obtained by using the Everett method at these levels is prob- 
ably associated with the mechanics of solution. 

6. The unmodified 13-moment distribution function of Grad is unacceptable for 
closing-out purposes at the second-order level. Two modifications were considered 
with the following result: Everett’s method of referring the Grad function to the electron 
frame of reference is more successfully used in predicting the traceless pressure tensor 
than is the distribution function obtained from information theory (entropy maximization). 
Neither technique improves the first-order computations. 

7. Neither the Everett modification to the Grad function nor that of information 
theory depicts the same time dependence as the exact second-order solution derived in 
the present research. The interpretation is not altogether clear, but one must expect 
that second-order properties should depend on time in this problem through means more 
complex than the temperature. In any event, the present solution is a rather pronounced 
departure from that of Chapman and Enskog because the second-order perturbation func- 
tion appears on the left side of the second-order perturbation equation. 

8. Everett’s calculations at the third and higher perturbation orders require fur- 
ther consideration before definite statements can be made regarding their validity. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 23, 1969. 
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APPENDIX A 

DEVELOPMENTS FROM INFORMATION THEORY 

It is shown in this appendix that the first-order Grad distribution function of equa- 
tion (14) can be derived just as well from the concepts of information theory as from the 
original Grad expansion in terms of three-dimensional Hermite polynomials (ref. 1). A 
start in this direction was recently achieved by Stankiewicz (refs. 4 and 5), but he stopped 
short of the required number of moments. 

The fundamental postulate of information theory states that the best distribution 
function that can be derived from limited experimental knowledge alone is the one which 
maximizes the entropy density 

s - s(o) - - -klf, ln(fe/t))dre = - $Sf$))qz dZe (Al) 

subject to the measured constraints. If the nonequilibrium contributions to the latter 
consist only of measurements of the 4 defined in equation (3), the application of the 
method of Lagrange multipliers iij to 6s = 0 and 64 = 0 yields the following varia- 
tional expressions: 

and 

Ve = c +,-. . 7 J (A3) 
j 

The combination of equations (3) and (A3) yields 

-jwk(2j + 2k + 3)I ! Fj (A4) 
j 

the substitution of which into equation (A3) gives the 16-moment perturbation function 

if j assumes the values 0, 1, and 2. The description of this function as a 16-moment 
approximation refers to the addition of p2 to the original 13 moments of Grad. 
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APPENDIX A - Concluded 

Among other requirements of a similar nature, the condition 

must be satisfied before Grad’s 13-moment function is consistent to first order with 
information theory and the full complement of pj constraints. 
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APPENDIX B 

COLLISION INTEGRALS 

It is shown in this appendix that equation (83) follows directly from the collision 
dynamics when the electron -heavy-particle interaction potential is written as the 
inverse <-power of the separation distance. 

The first step in such a development is the formulation of the reduced electron par- 
ticle velocity after a collision 7;’ in terms of the reduced electron particle velocity 
before the collision 7 and the corresponding scattering or deflection angle x. This 
straightforward exercise in geometry yields 

-1 ?’ =y’cos~+ysinxi(sincpcose+cos8coscpsin~) [ 

- j(cos cp cos E - cos 8 sin cp sin e) - i; sin 0 sin E 1 031) 
where 13 and cp are the polar and azimuthal angles, respectively, of 7 in spherical 
coordinates and E is the azimuthal angle of 7;’ with respect to the direction of < 

Accordingly, 

j- (” - 7’) b db de = 2@710W (1 - cos x)b db 032) 

The remaining integral involves, of course, the detailed collision dynamics, but that cal- 
culation is circumvented here by the following use (ref. 2) of equations (15) and (35): 

=- e2neR13 ,l-W~)fb)cp = _ 2 (o)- 
n1e OR04 

e 1 cfe 13O.F 033) 

and 

j- (7 - 7) b db de = 2?~7-1~~ (1 - cos x)b db = nj;;04 (-!%)1’2,.4& (B4) 

where n. J is the number density of the j-type heavy particles. 
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Finally, 

APPENDIX B - Concluded 

2 
s[ ( 

y, 1 - cos2)o + 2y2sin x cos x sin 8 cos 8 sin E 

- y2sin2x sin20 sin2, b db de 1 
= ~(3,; - y2) J; (1 - cos2x)b db 

= A(On(3r; - Y”) 1; (1 - cos x)b db 

(B5) 

from equations (Bl) and (B4). The ratio A([) of the two impact parameter integrals 
has the values 2, 1.034, and 0.666, respectively, for [ = 1, 4, and 00. (See ref. 6, 
pp. 546-549.) 
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